

Contents
About this course 1

Requirements 1

Section 1: Install required software 3
Install or verify Python installation 3

Setup a virtual environment 4

Install virtualenv and virtualenvwrapper 4

Create a virtual environment 6

Using the virtual environment 6

Install Pelican, the static site generator 8

Add support for Markdown 8

Git 8

Installation 9

ghp-import for Github deployment support 9

Section 2: Setup website 11
Create the site 11

Basic configuration 11

URL prefix, pagination and scripts 12

Hosting options 13

Build the site 14

Preview the site 16

Write content 17

Create new page 18

Create new blog post 19

Section 3: Host website 21
Hosting on GitHub 21

Setup a Git repository 21

Github configuration 22

Create repository on Github 22

Adding a remote 23

Publish site 24

Updating the site 26

Section 4: Links 29
Links 29

About this course
This is a step-by-step guide on creating and hosting a website and a blog

using programs written in Python.

We will be using Pelican - a static site generator for building the website.

These are some advantages of using a static site generator

• There is no need to install and maintain software (ex. a content

management system).

• There is no requirement for a database.

• Content is written in plain text using the Markdown or reStructuredText

syntax. There is no need to write HTML directly.

Requirements
The basic requirement for this course is an installation of Ubuntu Linux or

Windows.

These steps have been tested on Ubuntu 14.04 LTS and Windows 7.

About this course

1

Section 1: Install required software

Install or verify Python installation

Linux

Python is installed on Ubuntu and most other Linux distributions by default.

However, Python 2 is required to follow examples in this book.

You can check the version of Python installed using the following command in

a terminal:

python -V

Windows

On Windows, you will need to download and install the latest version of

Python 2 (currently 2.7.8) from http://www.python.org.

Download the MSI installer - python-2.7.8.msi (as of this writing) and

perform an installation using the default options.

Update system PATH

Add C:\Python27 and C:\Python27\Scripts to Windows PATH. This is

necessary so that we can call the python interpreter and scripts provided by

the various Python packages in a cmd.exe session.

To do so,

1. Right click on "Computer", select "Properties"

2. Select "Advanced system settings" from the navigation pane on the left.

3. Click on the "Environment Variables" button

Section 1: Install required software

3

http://www.python.org

4. Under "User variables for user", add (or edit) a variable called PATH and

append the following:

C:\Python27;C:\Python27\Scripts

5. Click the "OK" button to close the dialogs.

6. Open the command prompt (cmd.exe) and type:

python -V

Python should now be installed and available in the system PATH.

Setup a virtual environment
The second requirement is to create an isolated Python setup for our website.

This is called as a virtual environment.

We can then install additional python packages in the virtual environment

without affecting other programs installed on the system.

Mutiple such virtual environments can be created each independent of the

other.

The virtualenv Python module can be used to setup virtual environments.

virtualenvwrapper is an extension to virtualenv that makes it easier to create

and manage virtual environments.

Install virtualenv and virtualenvwrapper

Linux

Install the virtualenv and virtualenvwrapper packages using the following

command:

sudo apt-get install python-virtualenv virtualenvwrapper

Setup a virtual environment

4

Important

Open a new terminal session before proceeding with the next steps.

Windows

We will first install pip - a tool for installing and managing Python packages.

pip can then be used to install virtualenv.

1. Download the get-pip.py script from the pip installer website. "Right

click" --> "Save link/target as"

2. Open the command prompt (cmd.exe), navigate to the directory where the

script is downloaded. In my case, this was C:\User\vl\Downloads, so

C:\Users\vl> cd Downloads

and then type:

python get-pip.py

Install virtualenv

pip install virtualenv

Note

There port of virtualenvwrapper for Windows called as

virtualenvwrapper-win. However, I could not get it working due to a bug.

Setup a virtual environment

5

http://pip-installer.org/
https://bootstrap.pypa.io/get-pip.py
https://pypi.python.org/pypi/virtualenvwrapper-win
https://github.com/davidmarble/virtualenvwrapper-win/issues/44

I will update this section when I find a solution. Until then, we will use

the virtualenv scripts directly.

Create a virtual environment
We will create a new virtualenv called site to hold all necessary programs

required for the building and hosting of our site. To do this on

Linux

Open a terminal and type:

mkvirtualenv site

Output:

vl@laptop:~$ mkvirtualenv site

New python executable in site/bin/python

Installing setuptools, pip...done.

(site)vl@laptop:~$

Windows

Open a command prompt and type:

virtualenv site

This should create a folder called site.

Using the virtual environment

Setup a virtual environment

6

The setup process above should already place you in the virtualenv. Notice the

change in the prompt to include the name of the virtualenv

If this is not the case, you can always switch to the virtualenv using the

following command

workon site

Windows

Run the activate command

C:\Users\vl\site\Scripts\activate

The prompt should change to

(site) C:\Users\vl>

Within the virtualenv, you can install additional Python modules or run

scripts installed by these modules.

To exit, type:

deactivate

You will be returned back to the prompt.

Note

You will always need to be in the virtualenv when you are working with

the site.

Setup a virtual environment

7

Install Pelican, the static site generator
Pelican is a static site generator written in Python.

We can write content in a text editor using reStructuredText or Markdown

formats.

The use of templates make it easy to change the entire look of the site. Pelican

has support for Jinja2 templates.

It includes programs for generating and deployment of the site.

Switch to the site virtualenv we created before

Install Pelican using pip, the Python package management system

pip install pelican

Pelican should now be installed with all dependencies.

Add support for Markdown
Out of the box, Pelican supports writing content using the reStructuredText

syntax. To add support for writing content using Markdown, we will need to

install the corresponding Python module.

Install markdown using pip.

Linux and Windows

pip install markdown

Git
We will use Git for the deployment of our website i.e., pushing content to a

remote server (Github, in this course) to make the website available online.

Install Pelican, the static site generator

8

http://blog.getpelican.com
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://daringfireball.net/projects/markdown
http://jinja.pocoo.org
https://pypi.python.org/pypi/pip
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://daringfireball.net/projects/markdown
http://git-scm.com
http://github.com

Installation

Linux

Install Git using apt

sudo apt-get install git

Windows

Download the MSI installer from the Git website.

Git-1.9.4-preview20140815.exe (as of this writing).

Install Git using the default options except for the "Adjusting the PATH

environment" setting.

Select the second option "Use Git from the Windows Command Prompt" here

(See figure).

ghp-import for Github deployment support

Install Pelican, the static site generator

9

http://git-scm.com

The ghp-import script simplifies the process of publishing our website on

Github. It can be installed using pip

Linux and Windows

pip install ghp-import

With all the dependencies installed, we can now proceed towards creating the

website.

Install Pelican, the static site generator

10

http://github.com/davisp/ghp-import
http://github.com

Section 2: Setup website

Create the site
Let's create a basic site using Pelican.

First, create a new directory:

cd

mkdir samplesite

cd samplesite

Activate the site virtualenv we had created earlier. This needs to be done every

time we need to work with the site.

Setup a basic structure for the site using the pelican-quickstart command

pelican-quickstart

We will be asked a series of questions for the inital site configuration.

Hint

You can press ENTER to accept the default value for any option.

Basic configuration
The first series of questions are related to the basic configuration of the site

We will be creating our website in the samplesite directory. Since we are

already in this directory (cd samplesite), we will just use the default value .

The . (dot) here refers to the current directory.

Next, we enter a title for our website. I have used Sample site.

Section 2: Setup website

11

The author name will be displayed in blog posts.

For language of the website, I have used the default value (en - English).

Welcome to pelican-quickstart v3.3.0.

This script will help you create a new Pelican-based website.

Please answer the following questions so this script can

generate the files needed by Pelican.

> Where do you want to create your new web site? [.]

> What will be the title of this web site? Sample site

> Who will be the author of this web site? Vimalkumar Velayudhan

> What will be the default language of this web site? [en]

URL prefix, pagination and scripts
If you already have a domain registered for the webiste, enter it here (URL

prefix) otherwise, type n.

Article pagination enables navigation of blog posts. This is the number of blog

posts displayed per page. I've used the default(10).

A Makefile enables us to use commands for site generation and hosting.

You should also enable the creation of the auto-reload script. This script

generates the website whenever there is a change in content.

> Do you want to specify a URL prefix? e.g.,

 http://example.com (Y/n) n

> Do you want to enable article pagination? (Y/n) y

> How many articles per page do you want? [10]

> Do you want to generate a Fabfile/Makefile to automate

Section 2: Setup website

12

 generation and publishing? (Y/n) y

> Do you want an auto-reload & simpleHTTP script to assist

 with theme and site development? (Y/n) y

Hosting options
The next series of questions relate to how we are going to host our website

online.

We will need to choose from one of the many options available - FTP, SSH,

Dropbox, Amazon S3, Rackspace or Github.

I will be using Github as an example in this course. The Github user name of

the account is samplesite and when published, the site will be available

online at http://samplesite.github.io

> Do you want to upload your website using FTP? (y/N) n

> Do you want to upload your website using SSH? (y/N) n

> Do you want to upload your website using Dropbox? (y/N) n

> Do you want to upload your website using S3? (y/N) n

> Do you want to upload your website using Rackspace

 Cloud Files? (y/N) n

> Do you want to upload your website using GitHub Pages? (y/N) y

> Is this your personal page (username.github.io)? (y/N) y

Done. Your new project is available at /home/vl/samplesite

At the end of the process, pelican-quickstart saves all settings to a file

called pelicanconf.py.

Section 2: Setup website

13

http://samplesite.github.io

Here is a listing of files produced on running pelican-quickstart

(site)vl@laptop:~/sample-site$ ls -l

drwxrwxr-x 2 vl vl 4096 Aug 30 10:26 content

-rwxr-xr-x 1 vl vl 2197 Aug 30 10:26 develop_server.sh

-rw-rw-r-- 1 vl vl 1809 Aug 30 10:26 fabfile.py

-rw-rw-r-- 1 vl vl 3856 Aug 30 10:26 Makefile

drwxrwxr-x 2 vl vl 4096 Aug 30 10:26 output

-rw-rw-r-- 1 vl vl 830 Aug 30 10:26 pelicanconf.py

-rw-rw-r-- 1 vl vl 508 Aug 30 10:26 publishconf.py

With the basic site structure in place, we can now proceed towards building

the site.

Build the site

Linux

Pelican includes a script that will watch for changed content and regenerate

the site.

Run this script using the following command

vl@laptop:~/samplesite$ make devserver

Output:

Starting up Pelican and pelican.server

Pelican and pelican.server processes now running in background.

(site)vl@laptop:~/samplesite$

Build the site

14

DEBUG: Adding current directory to system path

DEBUG: Temporarily adding PLUGIN_PATH to system path

DEBUG: Restoring system path

DEBUG: Missing dependencies for asc

AutoReload Mode: Monitoring ``content``, ``theme`` and

``settings`` for changes.

DEBUG: Temporarily adding PLUGIN_PATH to system path

DEBUG: Restoring system path

 -> Modified: theme, settings. re-generating...

 WARNING: No valid files found in content.

 ... lines truncated

 -> writing /home/vl/samplesite/output/index.html

 -> writing /home/vl/samplesite/output/tags.html

 -> writing /home/vl/samplesite/output/categories.html

 -> writing /home/vl/samplesite/output/authors.html

 -> writing /home/vl/samplesite/output/archives.html

 Done: Processed 0 articles and 0 pages in 0.21 seconds.

The "Processed 0 articles and 0 pages" indicates that we haven't written any

content yet! We will do so in the next section.

Windows

Use the pelican command directly to watch for changes and generate output

pelican -r content

Build the site

15

Preview the site
To preview the site on

Linux

Open http://localhost:8000 in a browser.

The home page of the site should now be displayed.

To stop watching for changes, type:

vl@laptop:~/samplesite$ make stopserver

Note

You can also generate the site manually using

Build the site

16

http://localhost:8000

make html

Afterwards, you can serve the generated content using

make serve

To stop, press CTRL+C.

Windows

Open a new command prompt and run a HTTP server using Python itself.

cd C:\Users\vl\samplesite\output

python -m SimpleHTTPServer

Open http://localhost:8000 in a browser.

The home page of the site should now be displayed.

We can now start adding new content to the website.

Write content
The site does not have any content yet. Let us see how we can add a new page

and a new blog post.

Important

On Linux, the pelican development server should be running. Only then,

Pelican will automatically generate the new page and post.

Write content

17

http://localhost:8000

If this is not the case, you will have to generate the website manually using

make html.

On Windows, you will have to start pelican using the command:

pelican -r content

Create new page
We will add an About page to our website. To do this, make a folder called

pages inside the content directory

mkdir content/pages

Create a new file inside pages called about.md with the following content:

Title: About

Hello. This is a sample website created with Pelican.

Open http://localhost:8000/pages/about.html in a browser to view the new

page.

The site's navigation menu will also be updated to include a link for the About

page.

Write content

18

http://localhost:8000/pages/about.html

Create new blog post
We will now create a new blog post. Using a text editor, create a new file inside

the content folder with the following content.

For example, sample-post.md

Title: Sample blog post

Date: 2014-02-01 19:45

Slug: sample-blog-post

Author: Your Name

Summary: This is a sample blog post

Welcome. This is our first blog post.

Write content

19

Open http://localhost:8000/sample-blog-post.html to view the new blog

post.

Hint

You can assign posts to a category using Category:

Category: Python

Adding tags to a post can be achieved using Tags:

Tags: Pelican, Howto

This must be added to the metadata before post content.

We can now proceed towards publishing this site.

Write content

20

http://localhost:8000/sample-blog-post.html

Section 3: Host website
Pelican generates a complete static version of our website in the output

folder.

To host the website online, we should copy all the contents in this folder to a

server. This needs to be done whenver there is a change in the website - new

page, new blog post, theme or layout changes etc.,

For this course, we will host the website on Github.

Hosting on GitHub
We will first need to setup version control using Git before we can host the

website on Github.

Setup a Git repository
To start, initialize a git repository in the site directory using:

cd samplesite

git init

Important

On Windows, you will need to use the "Git Bash" program to be able to

use the commands for SSH connections and key generation.

Git Bash also provides auto-completion and colored output among other

features.

If you haven't already done so, add your name and email address to git

configuration:

Section 3: Host website

21

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

Github configuration
To proceed, you will need to

1. Create an account at http://github.com.

2. Add an SSH public key to your Github account. Please follow the

instructions on github for generating SSH keys and adding it to your

account.

Warning

Without this step, the following publishing steps will not work!

3. You can verify that you have setup this correctly using the command:

ssh -T git@github.com

Hi user! You've successfully authenticated, but GitHub

does not provide shell access.

Note

You might be prompted for the passphrase which you had used

during the key generation.

Create repository on Github

Section 3: Host website

22

http://github.com
http://help.github.com/articles/generating-ssh-keys

On Github, create a new repository for the site using the following steps

1. Create a new repository using the New repository button.

2. For the Repository name, enter user.github.io where user is your user

name on Github.

For a user samplesite, this would be samplesite.github.io

3. Click the Create repository button to create new repository.

Adding a remote
Before we can publish our samplesite on Github, we will need to add a pointer

to the repository we created on Github. This is called a remote. To do this:

Section 3: Host website

23

cd ~/samplesite

git remote add origin \

git@github.com:samplesite/samplesite.github.io.git

Here we add the remote Github repository with the name origin.

Note

Please replace samplesite with your repository name.

Publish site
To push content in the "output" folder and publish the website on Github, we

can use

Linux

make github

Output:

(site)vl@lenovo:~/samplesite$ make github

pelican /home/vl/samplesite/content

-o /home/vl/samplesite/output

-s /home/vl/samplesite/publishconf.py

WARNING: Feeds generated without SITEURL set properly may not

be valid

Done: Processed 1 article(s), 0 draft(s) and 1 page(s)

Section 3: Host website

24

in 0.19 seconds.

ghp-import -b master /home/vl/samplesite/output

git push origin master

Counting objects: 60, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (39/39), done.

Writing objects: 100% (60/60), 34.62 KiB | 0 bytes/s, done.

Total 60 (delta 16), reused 48 (delta 15)

To git@github.com:samplesite/samplesite.github.io.git

 * [new branch] master -> master

Windows

(site) C:\Users\vl\samplesite> python

C:\Users\vimal\site\Scripts\ghp-import -b master output

(site) C:\Users\vl\samplesite> git push origin master

After few minutes, the website will be available online at

http://user.github.io. In this example, it is http://samplesite.github.io.

Note

According to Github, it might take upto ten minutes before the page is

visible online after the first push. The next updates will be a lot faster.

Section 3: Host website

25

http://user.github.io
http://samplesite.github.io

Updating the site
Let's update the site by creating a new blog post.

Create a new file second-post.md in the content folder with the following

text:

Title: This is our second blog post

Date: 2014-02-02 20:00

Slug: our-second-blog-post

Author: Your Name

Summary: This is our second blog post

This is our second blog post

Updating the site

26

Save second-post.md and load http://localhost:8000 in a browser to view the

new blog post.

Push changes

After few minutes, load http://user.github.io in a browser.

Updating the site

27

http://localhost:8000

Section 4: Links

Links
Git

Website - http://git-scm.com

Documentation - http://git-scm.com/documentation

Github

Website - http://github.com

Help - http://help.github.com

Github Pages - http://pages.github.com

Generating SSH Keys - http://help.github.com/articles/generating-ssh-keys

ghp-import

Website - http://github.com/davisp/ghp-import

Python

Website - http://python.org

Pelican

Website - http://blog.getpelican.com/

Documentation - http://docs.getpelican.com/

Ubuntu

Website - http://ubuntu.com

Documentation (version 14.04) - http://help.ubuntu.com/14.04/index.html

virtualenv

Documentation - http://www.virtualenv.org/en/latest/

Section 4: Links

29

http://git-scm.com
http://git-scm.com/documentation
http://github.com
http://help.github.com
http://pages.github.com
http://help.github.com/articles/generating-ssh-keys
http://github.com/davisp/ghp-import
http://python.org
http://blog.getpelican.com/
http://docs.getpelican.com/
http://ubuntu.com
http://help.ubuntu.com/14.04/index.html
http://www.virtualenv.org/en/latest/

virtualenvwrapper

Documentation - http://virtualenvwrapper.readthedocs.org/en/latest

Section 4: Links

30

http://virtualenvwrapper.readthedocs.org/en/latest

